Loading…

Log in to bookmark your favorites and sync them to your phone or calendar.

Space Exploration [clear filter]
Thursday, October 10
 

16:40 EDT

ÉPPÉ: A Microsatellite Mission Concept to Characterize Exoplanets
ÉPPÉ (Extrasolar Planet Polarimetry Explorer / Explorateur polarimétrique des planètes extrasolaires) is a proposed concept for a microsatellite mission that would use time-resolved differential polarimetry to characterize known exoplanets (hot Jupiters, Neptunes, super Earths) and serve as a pathfinder for spectropolarimetric exoplanet biomarker detection. Exoplanet characterization is a top astrophysical science priority as enunciated by the NASA Exoplanet Exploration Program, the CASCA (Canadian Astronomical Society) 2011–2020 Long Range Plan, the Space Astronomy Origins and Planetary Systems Astrobiology topical team reports of the CSEW (Canadian Space Exploration Workshop), and ESA Cosmic Vision 2015-2025.

One of the limitations of current and future precision transit photometry and spectroscopy is that clouds and hazes prohibit spectroscopic feature detection. Vetting of a prospective exoplanet target prior to investing observation resources for detailed spectroscopy is therefore critical. The differential polarimetry capabilities of ÉPPÉ would be uniquely sensitive to polarized scattered light (dust, clouds, haze). So far, ground-based polarimeters have struggled to reach the 1 part-per-million level of precision required to detect scattered light from an exoplanet. By going to a dawn-dusk, Sun-synchronous orbit, we nearly eliminate the two major suspects for uncalibrated instrumental noise in ground-based measurements: the thermal stability of the optical setup and flexure of the optics at different telescope orientations.

The notional ÉPPÉ concept consists of a polarimetry instrumentation payload with a 30 cm aperture operating in the 300-800 nm band from a 180 kg class spacecraft in low-Earth orbit. ÉPPÉ is currently being advanced under a concept study funded by the Canadian Space Agency (CSA). In addition to defining the science requirements and developing technical concepts for the mission, spacecraft, and payload, planning for education and public outreach is also an integral component of the study.

Speakers
avatar for Taylor James Bell

Taylor James Bell

Graduate Student, McGill University
I am a PhD student at McGill university studying exoplanet atmospheres under the supervision of Professor Nicolas Cowan. While I'm an astronomer and primarily use space-based telescopes, I have had little knowledge of space technology and design before a year ago when I started my... Read More →



Thursday October 10, 2019 16:40 - 17:00 EDT
Room CR1 ICAO - 999 Boulevard Robert-Bourassa, Montréal, QC H3C 5H10

17:00 EDT

Lunar Technologies - Design Challenges
MPB Communications Inc. has been involved in Space R&D projects for over 40 years, building optical payloads for satellites, rovers and rockets. Currently, MPBC is developing key technologies to aid lunar exploration, notably including two projects: Lunar Cubesat Mission (VMMO “Ice Mapper”) and Dusty Thermal Vacuum Chamber (DTVAC). The VMMO Volatiles and Mineralogy Mapping Orbiter is a low-cost 12U lunar Cubesat being developed with CSA and ESA for mapping water-ice and other volatiles within permanently shadowed craters near lunar south pole using MPBC’s fiber laser technologies at 532 nm and 1560 nm. DTVAC was designed and built as a planetary environment simulator for Canadian Space Agency that simultaneously combines a controlled dust simulant shower in vacuum with simulated solar illumination and thermal control of the test device from below -196°C to above +120°C. The feasibility of liquid-helium cooling of a small platen with lunar regolith to about 40 K was also demonstrated, simulating temperatures relevant to permanently shadowed regions on the moon. Both of these projects present significant design challenges that are discussed in this presentation.

Speakers
avatar for Piotr Murzionak

Piotr Murzionak

Mechanical Designer, MPB Communications Inc.
Mr. Piotr Murzionak has a Bachelor’s degree in Aerospace Engineering from Carleton University (Ottawa, Canada) and a Master’s degree in Space Studies from International Space University (Strasbourg, France). He joined Space Photonics R&D division of MPB Communications Inc. in... Read More →


Thursday October 10, 2019 17:00 - 17:20 EDT
Room CR1 ICAO - 999 Boulevard Robert-Bourassa, Montréal, QC H3C 5H10
 


Twitter Feed